RADIOLOGICAL IMAGING OF LIVER TRANSPLANTATION

By

Dr. Mostafa Mohammed Adel Lecturer of interventional and diagnostic radiology National liver institute Menoufia University

INTRODUCTION

Liver transplantation (LT) is now regarded as the therapy of choice for:
Chronic end-stage liver disease
Fulminant hepatic failure
Early stage hepatocellular carcinoma (HCC).

- Two variants of liver transplantation (LT)
 Depending on the type of donor:
 - 1. Orthotopic liver transplantation (OLT)
 - Cadaveric LT or split-liver cadaveric LT
 - Living donor liver transplantation (LDLT).

Right hemiliver graft transplantation or left hemiliver

IMAGING TECHNIQUES

- Noninvasive techniques
 - 1. US and Doppler
 - 2. <u>CEUS</u>
 - 3. <u>CT</u>
 - 4. MRI and MRCP
- Invasive techniques
 - 1. Conventional angiography.
 - 2. Endoscopic retrograde cholangiopancreatography (ERCP)
 - 3. Percutaneous transhepatic cholangiography (PTC)

• CECT ... MIP images MRCP

Preoperative imaging • Imaging of the recipient Imaging of the donor **Postoperative imaging** Hepatic artery complications Portal vein complications Venous complications Biliary complications ► Abscess ► Malignancies

PREOPERATIVE IMAGING

<u>Aims:</u>

- Proper selection of recipients and donors.
- Surgical planning aiming for achieving an effective procedure with minimal morbidity.

IMAGING OF THE RECIPIENT

Primary goals

- 1. Exclude contraindications to LT:
 - Extended thrombosis of the portal tract
 - Hepatic and extrahepatic malignancies other than HCC
 - Intermediate-to-advanced HCC.

2. Assess the patency and anatomy of the vascular inflow and outflow of the liver for preoperative planning.

- According to Milan criteria, LT is indicated for:
 - 1. Solitary HCC <5 cm in size,
 - 2. Less than 3 HCCs sized 1–3 cm.
- Regardless of the criteria of choice, macrovascular invasion contraindicates LT.

IMAGING OF THE DONOR

- The **goal** of imaging liver donors is to identify causes of contraindications to donation including:
 - 1. Diffuse liver disease.
 - 2. Inadequate volume of the liver remnant or graft
 - **3**. Focal liver lesions (FLLs).

Diffuse liver disease

- Hepatic steatosis is the most frequent condition in this setting (up to 25% of donors).
- Upper tolerated limit of steatosis for LT is 30%.
- Standard of reference for assessing steatosis is still liver biopsy.
- Biopsy is prone to sampling errors and a potential cause for comorbidities in donors.

<u>Unenhanced CT:</u>

Liver parenchyma attenuation<40 Hounsfield units (HU) or10 HU smaller than the spleen.

• <u>MRI:</u>

Calculate signal dropout on in-phase and out of-phase chemical shift imaging

VOLUMETRY

 Performing volumetry of the donor's liver using dedicated software is of importance in estimating the volumes of the entire liver, remnant liver and graft.

POSTOPERATIVE IMAGING

- <u>Aims</u> to prompt identification of complications classified into early or late.
- Vascular and biliary causes are the most frequent ones.
- Recurrent diseases after LT (e.g., HCC, cirrhosis of the graft, and primitive sclerosing cholangitis)

HEPATIC ARTERY COMPLICATIONS

Include:

- 1. Hepatic artery thrombosis (HAT)
- 2. Hepatic artery stenosis (HAS)
- **3**. Hepatic artery pseudoaneurism (HAP).

HEPATIC ARTERY THROMBOSIS (HAT)

- Most common vascular complication.
- HAT can occur early (within 1–2 months) or late from LT.
- Hepatic artery remains the only blood supply to the bile ducts Thus, HAT causes biliary ischemia and hepatic necrosis, which in turn translate into bile leak, sepsis and graft failure.

- Serial Doppler US examinations following LT are of great importance for early assessment of absence of flow in the hepatic artery.
- False positive cases on Doppler US
 - Low cardiac output,
 - ✓Arterial spasm,
 - ✓ Severe parenchyma edema.
- False negatives are associated to the development of collaterals
- CEUS may be needed in doubtful cases.

CT angiography:

- ➤A filling defect or an abrupt cut-off of the vessel caliber (usually at the anastomotic site).
- Associated parenchymal areas of infarction.
- Signs of biliary ischemia or infection.
- MRI angiography has limited role in practice as it is less available and difficult to be performed in critical patients.

HEPATIC ARTERY STENOSIS (HAS)

Doppler US:

Increased peak systolic velocity (> 200 cm/ sec) at the stenotic site.

Distally, arterial flow becomes turbulent and shows a "parvus-tardus" waveform at the intrahepatic branches with a resistance index (RI) < 0.5.</p>

HEPATIC ARTERY PSEUDOANEURYSM (HAP).

- Rare complication predominantly mycotic or iatrogenic occurring at:
 - Anastomotic site (usually after angioplasty)
 - Intrahepatic branches (after biopsy or biliary intervention).
- Color Doppler US:

Characteristic , turbulent "yinyang" flow within an anechoic, small "collection-like" structure at the hepatic hilum or near the vessels course.

CT or MRI angiography

Confirm diagnosis

PORTAL VEIN COMPLICATIONS

- They are rare (1–2% of patients),
- Include portal vein thrombosis (PVT) and portal vein stenosis (PVS).

PORTAL VEIN THROMBOSIS (PVT)

- Usually presents as an early complication.
- Color Doppler US:
 - Absent flow, with our without direct demonstration of an intraluminal echogenic thrombus.
- Chronic thrombosis:

Portal carvernoma, with hypertrophic hepatic artery and multiple, thin portal collaterals at porta hepatis

• CT or MRI:

- Better delineate the extension and degree of intravascular filling defects for the purpose of therapy.
 - Partial thrombosis may benefit from medical therapy.
 - Complete thrombosis requires a variety of treatments ranging from thrombolysis to retransplant.

PORTAL VEIN STENOSIS (PVS)

• Doppler US:

increased peak anastomotic velocity >125
cm/s at the site of anastomosis.

anastomoticto- preanastomotic velocity ratio equal or larger than 3:1.

• Direct transhepatic portography:

Pressure gradient across the stenosis >5 mm Hg is considered diagnostic.

• **CT or MRI** confirmation is usually easy.

VENOUS COMPLICATIONS

- Complications involving IVC and hepatic veins are uncommon (1–4% of patients).
- They include thrombosis or stenosis.

VENOUS THROMBOSIS

- Clinical manifestations varying from lower extremity edema to Budd-Chiari syndrome, depending on the degree of venous obstruction.
- Doppler US assessment raises the suspicion of thrombosis when an echogenic, intravascular thrombus is observed.
- **CT and MRI**: used to confirm the diagnosis

BILIARY COMPLICATIONS

- •Biliary complications (BCs) are **frequent** (5–32% of patients), representing the major source of morbidity and graft dysfunction/loss after rejection.
- •There are several explanations:
- •First, some LT technical choices are "per se" a predisposing factor to complications: e.g., LDLT predisposes to cut-surface biliary leakage.
- •Second, the arterial-only vascularization of the biliary tract depends from the hepatic artery patency, making bile ducts prone to ischemic cholangitis in the case of HAT or HAS.
- •Third, bile ducts are sensitive to a variety of immunologically-related conditions, manifesting with microangiopathic injury.

BILE LEAKAGE

- The most frequent early BC (up to 25% of patients),
- Manifesting at:
 - The entry site after T-tube removal (80% of patients)
 - Biliary anastomosis,
 - Liver cut-surface after split-OLT or LDLT,
 - Perihepatic and subhepatic space,
 - Wherever along intra- or extrahepatic bile ducts in the case of HAT.

- Small leaks tend to resolve spontaneously and are managed conservatively,
- Larger ones translating into bilomas (with or without superinfection) should be treated with transhepatic biliary drainage, stenting, surgical repair or biliary reconstruction.

ANASTOMOTIC STRICTURES

- Occur in about 13–19% of patients
- MRCP:

The stricture appear as a short, focal absence of biliary signal at the common bile duct, lying between the donor and recipient cystic duct stumps, with biliary dilation upstream.

ABSCESS

- Causes:
 - Super-infection of intrahepatic collections (seromas, hematomas or bilomas)
 - Parenchymal infarcts in patients with HAT or HAS.
- CECT:

Complex areas with fluid or ambiguous attenuation, with a peripheral rim of contrast enhancement, intralesional gas in typical cases

Percutaneous drainage is the treatment of choice.

MALIGNANCIES

- LT patients are at higher risk to develop de novo malignancies compared to the normal population due to co-existing risk factors and the immunosuppressive therapy.
- Skin cancers and post-transplant lymphoproliferative disease (PTLD) are most frequent.
- CT provides a panoramic representation of the abdomen and should be considered the imaging modality of choice for diagnosis and staging.
- Positron emission tomography-CT (PET-CT) also plays a key-role both in diagnosis and follow-up.

THANK YOU